【24h】

First Order ODEs: Mathematica and Symbolic-Numerical Methods

机译:一阶ODE:Mathematica和符号数值方法

获取原文
获取原文并翻译 | 示例

摘要

The use of information technology in addition to traditional lectures affords a means to develop student intuition and curiosity, reaching in the same time a deep knowledge of the subject of study. The aim of this work is to show the didactic use of a Computer Algebra System to illustrate and compare different symbolic-numerical methods for solving first order ordinary differential equations (ODEs). In particular, we apply, relate and compare the built-in functions of Mathematica, the method of integration by series, the Picard process and the linearization method in solving some first order ODEs. This approach allows students not only to master the basic methods for solving ODEs, but also to be naturally led to theoretical deepening of such areas as power series, stability and convergence theory, elements of functional analysis or the local-global relationship via linearization.
机译:除了传统的授课外,信息技术的使用还提供了一种培养学生的直觉和好奇心的方法,同时也使他们对学习主题有了深入的了解。这项工作的目的是展示如何使用计算机代数系统来说明和比较用于求解一阶常微分方程(ODE)的不同符号数字方法。尤其是,我们在解决一些一阶ODE时应用,关联和比较了Mathematica的内置函数,系列积分方法,Picard过程和线性化方法。这种方法不仅使学生能够掌握求解ODE的基本方法,而且自然会导致理论上对诸如幂级数,稳定性和收敛性理论,功能分析的元素或通过线性化进行局部-全局关系等领域的加深。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号