首页> 外文会议>International Conference on Computational Science - ICCS 2003 Pt.3 Jun 2-4, 2003 Melbourne, Australia and St. Petersburg, Russia >Issues in the Design of Scalable Out-of-Core Dense Symmetric Indefinite Factorization Algorithms
【24h】

Issues in the Design of Scalable Out-of-Core Dense Symmetric Indefinite Factorization Algorithms

机译:可扩展核外密集对称不定因子分解算法设计中的问题

获取原文
获取原文并翻译 | 示例

摘要

In the factorization of indefinite symmetric linear systems, symmetric pivoting is required to maintain numerical stability, while attaining a reduced floating point operation count. However, symmetric pivoting presents many challenges in the design of efficient algorithms, and especially in the context of a parallel out-of-core solver for dense systems. Here, the search for a candidate pivot in order to eliminate a single column potentially requires a large number of messages and accesses of disk blocks. In this paper, we look at the problems of scalability in terms of number of processors and the ratio of data size relative to aggregate memory capacity for these solvers. We find that diagonal pivoting methods which exploit locality of pivots offer the best potential to meet these demands. A left-looking algorithm based on an exhaustive block-search strategy for dense matrices is described and analysed; its scalability in terms of parallel I/O is dependent on being able to find stable pivots near or within the current elimination block.
机译:在不确定的对称线性系统的分解中,需要对称枢转以保持数值稳定性,同时获得减少的浮点运算次数。然而,对称枢转在有效算法的设计中提出了许多挑战,尤其是在用于密集系统的并行核外求解器的情况下。在这里,为了消除单个列而搜索候选数据透视可能潜在地需要大量消息和磁盘块访问。在本文中,我们从处理器数量以及这些求解器的数据大小与总内存容量之比的角度研究可伸缩性问题。我们发现,利用枢轴局部性的对角枢轴方法可以最大程度地满足这些需求。描述并分析了基于穷举块搜索策略的稠密矩阵左眼算法。它在并行I / O方面的可扩展性取决于能否在当前消除模块附近或内部找到稳定的枢轴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号