首页> 外文会议>International Conference on Computational Scinece and Its Applications(ICCSA 2005) pt.3; 20050509-12; Singapore(SG) >Modeling Sage Grouse: Progressive Computational Methods for Linking a Complex Set of Local, Digital Biodiversity and Habitat Data Towards Global Conservation Statements and Decision-Making Systems
【24h】

Modeling Sage Grouse: Progressive Computational Methods for Linking a Complex Set of Local, Digital Biodiversity and Habitat Data Towards Global Conservation Statements and Decision-Making Systems

机译:鼠尾草建模:将复杂的本地数字生物多样性和栖息地数据集与全球保护声明和决策系统联系起来的渐进计算方法

获取原文
获取原文并翻译 | 示例

摘要

Modern conservation management needs to link biological questions with computational approaches. As a global template, here we present such an approach from a local study on sage grouse breeding habitat, leks, in North Na-trona County, Wyoming, using remote sensing imagery, digital datasets, spatial statistics, predictive modelling and a Geographic Information System (GIS). Four quantitative models that describe sage grouse breeding habitat selection were developed for multiple scales using logistic regression and multivariate adaptive regression splines (MARS-Salford Systems). Based on candidate models and AIC, important habitat predictor variables were elevation, distance to human development, slope, distance to roads, NDVI and distance to water, but not Sagebrush. Some predictors changed when using different scales and MARS. For the year 2011, a cumulative prediction index approach is presented on how the population viability of sage grouse can be assessed over time and space using Markov chain models for deriving future landscape scenarios and MARS for species predictions.
机译:现代保护管理需要将生物学问题与计算方法联系起来。作为全球模板,在这里,我们从怀俄明州北纳特罗纳县关于鼠尾草繁殖栖息地韭菜的本地研究中,使用遥感图像,数字数据集,空间统计数据,预测模型和地理信息系统,介绍这种方法(GIS)。使用Logistic回归和多元自适应回归样条(MARS-Salford Systems),针对多个尺度开发了描述鼠尾草繁殖育种生境选择的四个定量模型。根据候选模型和AIC,重要的栖息地预测变量为海拔,与人类发育的距离,坡度,与道路的距离,NDVI和与水的距离,但不是鼠尾草。使用不同的比例尺和MARS时,某些预测变量发生了变化。对于2011年,提出了一种累积预测指数方法,说明如何使用马尔可夫链模型得出未来的景观情景和MARS进行物种预测,以评估随时间和空间的鼠尾草种群的生存力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号