【24h】

Object Boundary Edge Selection Using Level-of-Detail Canny Edges

机译:使用详细程度Canny边缘的对象边界边缘选择

获取原文
获取原文并翻译 | 示例

摘要

Recently, Nguyen proposed a method for tracking a non-parameterized object (subject) contour in a single video stream with a moving camera and changing background. Nguyen's approach combined outputs of two steps: creating a predicted contour and removing background edges. Nguyen's background edge removal method of leaving many irrelevant edges is subject to inaccurate contour tracking in a complex scene. Nguyen's method of combining the predicted contour computed from the previous frame accumulates tracking error. We propose a brand-new method for tracking a nonparameterized subject contour in a single video stream with a moving camera and changing background. Our method is based on level-of-detail (LOD) Canny edge maps and graph-based routing operations on the LOD maps. We compute a predicted contour as Nguyen do. But to reduce side-effects because of irrelevant edges, we start our basic tracking using simple (strong) Canny edges generated from large image intensity gradients of an input image, called Scanny edges. Starting from Scanny edges, we get more edge pixels ranging from simple Canny edge maps untill the most detailed (weaker) Canny edge maps, called Wcanny maps. If Scanny edges are disconnected, routing between disconnected parts are planned using level-of-detail Canny edges, favoring stronger Canny edge pixels. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the strongest edge pixels only, thereby relying on the current frame edge pixel as much as possible contrary to Nguyen's approach of always combining the previous contour. Our experimental results show that this tracking approach is robust enough to handle a complex-textured scene.
机译:最近,Nguyen提出了一种使用移动摄像机并改变背景来跟踪单个视频流中非参数化对象(对象)轮廓的方法。 Nguyen的方法结合了两个步骤的输出:创建预测轮廓和删除背景边缘。 Nguyen的背景边缘去除方法会留下许多不相关的边缘,因此在复杂场景中轮廓跟踪不准确。 Nguyen组合从前一帧计算出的预测轮廓的方法会累积跟踪误差。我们提出了一种全新的方法,用于通过移动摄像机和变化的背景跟踪单个视频流中的非参数化主体轮廓。我们的方法基于详细程度(LOD)Canny边缘贴图和在LOD贴图上基于图的路由操作。我们像阮一样计算预测的轮廓。但是,为了减少由于不相关的边缘而引起的副作用,我们使用从输入图像的大图像强度梯度(称为“斯堪尼边缘”)生成的简单(强)Canny边缘开始基本跟踪。从Scanny边缘开始,我们得到更多的边缘像素,从简单的Canny边缘贴图到最详细(较弱)的Canny边缘贴图,称为Wcanny贴图。如果断开了Scanny边缘,则将使用详细程度的Canny边缘来计划断开的零件之间的布线,以支持更强的Canny边缘像素。我们的精确跟踪基于仅选择最强的边缘像素来减少不相关边缘的影响,从而与Nguyen始终结合先前轮廓的方法相反,尽可能多地依赖当前帧边缘像素。我们的实验结果表明,这种跟踪方法足够鲁棒,可以处理复杂纹理的场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号