首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2004) pt.2; 20040514-20040517; Assisi; IT >Density Analysis on Large Geographical Databases. Search for an Index of Centrality of Services at Urban Scale
【24h】

Density Analysis on Large Geographical Databases. Search for an Index of Centrality of Services at Urban Scale

机译:大型地理数据库的密度分析。搜索城市规模服务中心度指数

获取原文
获取原文并翻译 | 示例

摘要

Geographical databases are available to date containing detailed and georeferenced data on population, commercial activities, business, transport and services at urban level. Such data allow examining urban phenomena at very detailed scale but also require new methods for analysis, comprehension and visualization of the spatial phenomena. In this paper a density-based method for extracting spatial information from large geographical databases is examined and first results of its application at the urban scale are presented. Kernel Density Estimation is used as a density based technique to detect clusters in spatial data distributions. GIS and spatial analytical methods are examined to detect areas of high services' supply in an urban environment. The analysis aims at identifying clusters of services in the urban environment and at verifying the correspondence between urban centres and high levels of service.
机译:迄今可获得地理数据库,其中包含有关城市一级人口,商业活动,商业,运输和服务的详细和地理参考数据。这样的数据可以非常详细地检查城市现象,但也需要新的方法来分析,理解和可视化空间现象。本文研究了一种基于密度的从大型地理数据库中提取空间信息的方法,并提出了其在城市规模中应用的初步结果。内核密度估计用作基于密度的技术来检测空间数据分布中的聚类。审查了GIS和空间分析方法,以检测城市环境中高服务供应区域。该分析旨在确定城市环境中的服务群,并验证城市中心与高水平服务之间的对应关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号