【24h】

A Bayesian Approach for Estimating Link Travel Time on Urban Arterial Road Network

机译:贝叶斯方法估算城市主干路网的通行时间

获取原文
获取原文并翻译 | 示例

摘要

Recently, Korean Ministry of Construction and Transportation selects three cities as the Intelligent Transport Model City to build a test bed for research in Intelligent Transportation System (ITS). One of the most sought-after information in any ITS project is to provide arterial travel speed forecasts to travellers. To estimate the arterial travel speed, one needs to apply a mathematical model supplied with sensor data generated by roadside sensors and in-vehicle sensors. In this research effort, we develop a simple Bayesian estimator and an expanded neural network model to estimate arterial link travel speed. Input data used are from dual-loop detectors and probe vehicles with DSRC (Dedicated Short-range Communication) device. Data from one of model city, Jeonju, are used to generate test data for the simulation where the probe vehicle's speed is random sampled from observed vehicles' speed. Initial run shows that the neural network model developed can provide accurate estimates of arterial link speed using only probe vehicle's speed data.
机译:最近,韩国建设交通部选择三个城市作为“智能交通模范城市”,为智能交通系统(ITS)的研究搭建测试平台。在任何ITS项目中,最抢手的信息之一就是为旅行者提供动脉行进速度预测。为了估计动脉的行进速度,需要应用数学模型,该数学模型提供有由路边传感器和车载传感器生成的传感器数据。在这项研究工作中,我们开发了一个简单的贝叶斯估计器和一个扩展的神经网络模型来估计动脉链接的行进速度。使用的输入数据来自双回路探测器和带有DSRC(专用短程通信)设备的探测车。来自模型城市之一的全州市的数据用于生成模拟测试数据,其中从观察到的车辆速度中随机采样探测车的速度。初步运行表明,开发的神经网络模型仅使用探测车的速度数据即可提供准确的动脉链路速度估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号