首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2007) pt.3; 20070826-29; Kuala Lumpur(MY) >Performance of Particle Swarm Optimization in Scheduling Hybrid Flow-Shops with Multiprocessor Tasks
【24h】

Performance of Particle Swarm Optimization in Scheduling Hybrid Flow-Shops with Multiprocessor Tasks

机译:具有多处理器任务的混合流水车间调度中的粒子群优化性能

获取原文
获取原文并翻译 | 示例

摘要

In many industrial and computing applications, proper scheduling of tasks can determine the overall efficiency of the system. The algorithm, presented in this paper, tackles the scheduling problem in a multi-layer multiprocessor environment, which exists in many computing and industrial applications. Based on the scheduling terminology, the problem can be defined as multiprocessor task scheduling in hybrid flow-shops. This paper presents a particle swarm optimization algorithm for the solution and reports its performance. The results are compared with other well known meta-heuristic techniques proposed for the solution of the same problem. Our results show that particle swarm optimization has merits in solving multiprocessor task scheduling in a hybrid flow-shop environment.
机译:在许多工业和计算机应用程序中,正确的任务计划可以确定系统的整体效率。本文提出的算法解决了多层多处理器环境中的调度问题,该环境存在于许多计算和工业应用中。基于调度术语,可以将问题定义为混合流水车间中的多处理器任务调度。本文针对该解决方案提出了一种粒子群优化算法,并报告了其性能。将结果与为解决同一问题而提出的其他众所周知的元启发式技术进行了比较。我们的结果表明,粒子群优化在解决混合流水车间环境中的多处理器任务调度方面具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号