首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2007) pt.1; 20070826-29; Kuala Lumpur(MY) >A New Dynamic Programming Algorithm for Orthogonal Ruler Folding Problem in d-Dimensional Space
【24h】

A New Dynamic Programming Algorithm for Orthogonal Ruler Folding Problem in d-Dimensional Space

机译:d维空间中正交直尺折叠问题的新动态规划算法

获取原文
获取原文并翻译 | 示例

摘要

A chain or n-link is a sequence of n links whose lengths are fixed joined together from their endpoints, free to turn about their endpoints, which act as joints. "Ruler Folding Problem", which is NP-Complete is to find the minimum length of the folded chain in one dimensional space. The best result for ruler folding problem is reported by Hopcroft et al. in one dimensional space which requires O(nL~2) time complexity, where L is length of the longest link in the chain and links have integer value lengths. We propose a dynamic programming approach to fold a given chain whose links have integer lengths in a minimum length in O(nL) time and space. We show that by generalizing the algorithm it can be used in d-dimensional space for orthogonal ruler folding problem such that it requires O(2~dndL~d) time using O(2~dndL~d) space.
机译:链或n链接是n个链接的序列,其长度从其端点固定连接在一起,可以自由旋转它们的端点,这些端点充当关节。 NP-Complete的“ Ruler Folding Problem”是在一维空间中找到折叠链的最小长度。 Hopcroft等人报告了尺子折叠问题的最佳结果。在需要O(nL〜2)时间复杂度的一维空间中,其中L是链中最长链节的长度,链节具有整数值长度。我们提出一种动态编程方法来折叠给定链,该链的链接在O(nL)时间和空间中的最小长度为整数长度。我们证明,通过推广该算法,它可以在d维空间中用于正交标尺折叠问题,从而使用O(2〜dndL〜d)空间需要O(2〜dndL〜d)时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号