首页> 外文会议>2019 International Conference on Automation, Computational and Technology Management >National Identity Predictive Models for the Real Time Prediction of European School’s Students: Preliminary Results
【24h】

National Identity Predictive Models for the Real Time Prediction of European School’s Students: Preliminary Results

机译:欧洲学生实时预测的国家身份预测模型:初步结果

获取原文
获取原文并翻译 | 示例

摘要

An experimental study is conducted to predict the real time national identity (national or immigrants) of the students based on their responses in information and communication technology (ICT) survey held in European schools. All the experiments are conducted in SPSS IBM modeler version 18.1. The target datasets were collected by ESSIE (SMART 2010/0039) during the big survey at levels 3 of schools ISCED (International Standard Classification of Education) in the year 2011. The auto classifier node selected 5 supervised machine learning classifiers filtering out of 8 classifiers. To predict the national identity of students in academic school, the highest accuracy 96.6% is achieved by decision tree C5 with filtering of 46 features out of total 156 and to predict the national identity of students in vocational school, the uppermost accuracy 94.3% is achieved by Tree-AS with reduction of total 41 features out of total 172. Hence, to predict the national identity, self-reduction and auto classifier stabilized only 46 features for C5 Tree and 41 features for Tree-AS. The findings of paper also signify that C5 classifier outperformed the Logistic Regression (LR) and Tree-AS after feature reduction at academic schools. Further, Tree-AS also outperformed the Bayesian network (BN), linear support vector machine (LSVM) and LR after feature reduction at vocational schools.
机译:根据学生在欧洲学校举行的信息和通信技术(ICT)调查中的回答,进行了一项实验研究,以预测学生的实时国民身份(国民或移民)。所有实验均在SPSS IBM Modeler 18.1版中进行。目标数据集由ESSIE(SMART 2010/0039)在2011年对ISCED(国际教育标准分类)学校3级进行的大调查中收集。自动分类器节点从8个分类器中选择了5个监督的机器学习分类器。要预测学院学生的民族身份,通过决策树C5筛选出156个特征中的46个特征,可以达到最高准确率96.6%;要预测职业学校学生的民族身份,则可以达到最高准确度94.3%减少了172个特征中的41个特征。因此,为了预测国民身份,自我简化和自动分类器仅稳定了C5树的46个特征和Tree-AS的41个特征。论文的发现还表明,在学术学校减少了特征后,C5分类器的性能优于Logistic回归(LR)和Tree-AS。此外,在职业学校减少了特征之后,Tree-AS还优于贝叶斯网络(BN),线性支持向量机(LSVM)和LR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号