首页> 外文会议>International Conference on Artificial Neural Nets and Genetic Algorithms, 2001, Prague, Czech Republic >Optimization with Implicitly Known Objective Functions Using RBF Networks and Genetic Algorithms
【24h】

Optimization with Implicitly Known Objective Functions Using RBF Networks and Genetic Algorithms

机译:使用RBF网络和遗传算法对隐式已知目标函数进行优化

获取原文
获取原文并翻译 | 示例

摘要

In many practical engineering design problems, the form of objective function is not given explicitly in terms of design variables. Given the value of design variables, under this circumstance, the value of objective function is obtained by some analysis such as structural analysis, fluidmechanic analysis, thermodynamic analysis, and so on. Usually, these analyses are considerably time consuming to obtain a value of objective function. In order to make the number of analyses as few as possible, we suggest a method by which optimization is performed in parallel with predicting the form of objective function. In this paper, radial basis function networks (RBFN) are employed in predicting the form of objective function, and genetic algorithms (GA) in searching the optimal value of the predicted objective function. The effectiveness of the suggested method will be shown through some numerical examples.
机译:在许多实际的工程设计问题中,没有根据设计变量明确给出目标函数的形式。给定设计变量的值,在这种情况下,可以通过结构分析,流体力学分析,热力学分析等分析获得目标函数的值。通常,这些分析要花费大量时间才能获得目标函数的值。为了使分析次数尽可能少,我们建议一种在预测目标函数形式的同时进行优化的方法。在本文中,径向基函数网络(RBFN)用于预测目标函数的形式,遗传算法(GA)用于搜索预测目标函数的最优值。通过一些数值示例将说明所建议方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号