首页> 外文会议>International Conference on Adaptive and Natural Computing Algorithms; 2005; Coimbra(PT) >Evolutionary Design and Evaluation of Modeling System for Forecasting Urban Airborne Maximum Pollutant Concentrations
【24h】

Evolutionary Design and Evaluation of Modeling System for Forecasting Urban Airborne Maximum Pollutant Concentrations

机译:城市空气中最大污染物浓度预测模型系统的进化设计与评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an integrated modeling system based on a multi-layer perceptron model is developed and evaluated for the forecasting of urban airborne maximum pollutant concentrations. In the first phase, the multi-objective genetic algorithm (MOGA) and sensitivity analysis are used in combination for identifying feasible system inputs. In the second phase, the final evaluation of the developed system is performed for the concentrations of pollutants measured at an urban air quality station in central Helsinki, Finland. This study showed that the evolutionary design of neural network inputs is an efficient tool, which can help to improve the accuracy of the model. The evaluation work itself showed that the developed modeling system is capable of producing fairly good operational forecasts.
机译:本文开发并评估了基于多层感知器模型的集成建模系统,以预测城市空气中的最大污染物浓度。在第一阶段,将多目标遗传算法(MOGA)和敏感性分析结合使用,以识别可行的系统输入。在第二阶段中,将对在芬兰赫尔辛基市中心的城市空气质量站测得的污染物浓度进行开发系统的最终评估。这项研究表明,神经网络输入的进化设计是一种有效的工具,可以帮助提高模型的准确性。评估工作本身表明,开发的建模系统能够产生相当好的运行预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号