【24h】

Breaking the news: Extracting the sparse citation network backbone of online news articles

机译:突发新闻:提取在线新闻文章的稀疏引用网络主干

获取原文

摘要

Networks of online news articles and blog posts are some of the most commonly used data sets in network science. As a result, they have become a vital piece of network analysis and are used for the evaluation of algorithms that work on large networks, or serve as examples in the analysis of information diffusion and propagation. Similarly, scientific citation networks are part of the bedrock upon which much of modern network analysis is built and have been studied for decades. In this paper, we show that the backbone inherent to networks of online news articles shares significant structural similarities to scientific citation networks once the noise of spurious links is stripped away. We present a data set of news articles that, while it is extremely sparse and lightweight, still contains information relevant to the propagation of information in mass media and is remarkably similar to scientific citation networks, thus opening the door to the use of established methodologies from scientometrics and bibliometrics in the analysis of online news propagation.
机译:在线新闻文章和博客文章网络是网络科学中最常用的一些数据集。结果,它们已成为网络分析的重要组成部分,并用于评估适用于大型网络的算法,或者用作分析信息扩散和传播的示例。同样,科学引文网络是基础,现代网络分析的许多基础已经建立,并且已经研究了数十年。在本文中,我们表明,一旦消除了虚假链接的噪音,在线新闻文章网络固有的主干网与科学引文网络就具有重大的结构相似性。我们提供的新闻报道数据集虽然非常稀疏和轻巧,但仍包含与大众媒体中信息传播有关的信息,并且与科学引文网络极为相似,因此为使用已建立的方法论打开了大门在线新闻传播分析中的科学计量学和文献计量学。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号