【24h】

Big data and the regulation of financial markets

机译:大数据与金融市场监管

获取原文

摘要

The development of computational data science techniques in natural language processing (NLP) and machine learning (ML) algorithms to analyze large and complex textual information opens new avenues to study intricate processes, such as government regulation of financial markets, at a scale unimaginable even a few years ago. This paper develops scalable NLP and ML algorithms (classification, clustering and ranking methods) that automatically classify laws into various codes/labels, rank feature sets based on use case, and induce best structured representation of sentences for various types of computational analysis. The results provide standardized coding labels of policies to assist regulators to better understand how key policy features impact financial markets.
机译:自然语言处理(NLP)和机器学习(ML)算法中的计算数据科学技术的发展,用于分析大型和复杂的文本信息,为研究复杂的过程(例如政府对金融市场的监管)开辟了新的途径,其规模甚至是无法想象的。几年前。本文开发了可扩展的NLP和ML算法(分类,聚类和排名方法),该算法可将法律自动分类为各种代码/标签,根据用例对特征集进行排名,并为各种类型的计算分析引入最佳的结构化句子表示形式。结果为政策提供了标准化的编码标签,以帮助监管机构更好地了解关键政策特征如何影响金融市场。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号