【24h】

A Joint 3D UNet-Graph Neural Network-Based Method for Airway Segmentation from Chest CTs

机译:基于联合3D UNet图神经网络的胸部CT气道分割方法

获取原文

摘要

We present an end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model. In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions. The dense feature maps at this level are transformed into a graph input to the GNN module. The incorporation of graph convolutions in the UNet provides nodes in the graph with information that is based on node connectivity, in addition to the local features learnt through the downsampled paths. This information can help improve segmentation decisions. By stacking several graph convolution layers, the nodes can access higher order neighbourhood information without substantial increase in computational expense. We propose two types of node connectivity in the graph adjacency: (ⅰ) one predefined and based on a regular node neighbourhood, and (ⅱ) one dynamically computed during training and using the nearest neighbour nodes in the feature space. We have applied this method to the task of segmenting the airway tree from chest CT scans. Experiments have been performed on 32 CTs from the Danish Lung Cancer Screening Trial dataset. We evaluate the performance of the UNet-GNN models with two types of graph adjacency and compare it with the baseline UNet.
机译:我们通过将3D UNet架构与图神经网络(GNN)模型相结合,提出了一种端到端的深度学习细分方法。在这种方法中,UNet最深层的卷积层被具有一系列图卷积的基于GNN的模块所取代。此级别的密集特征图将转换为输入到GNN模块的图形。除了通过下采样路径学习到的局部特征之外,在UNet中包含图卷积还为图中的节点提供了基于节点连接性的信息。此信息可以帮助改善细分决策。通过堆叠几个图卷积层,节点可以访问更高阶的邻域信息,而不会显着增加计算费用。我们在图邻接中提出了两种类型的节点连通性:(ⅰ)一种预定义并基于常规节点邻域,(and)一种在训练过程中动态计算并使用特征空间中最近的邻居节点。我们已经将该方法应用于从胸部CT扫描中分割气道树的任务。已经对来自丹麦肺癌筛查试验数据集的32部CT进行了实验。我们用两种类型的图邻接来评估UNet-GNN模型的性能,并将其与基准UNet进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号