Biomedical Imaging Group Rotterdam Department of Radiology and Nuclear Medicine Erasmus MC 3015 CE Rotterdam The Netherlands Department of Pediatric Pulmonology Erasmus MC-Sophia Children Hospital 3015 CE Rotterdam The Netherlands;
Department of Computer Science University of Copenhagen 2100 Copenhagen Denmark;
Department of Medicine Section of Pulmonary Medicine Herlev-Gentofte Hospital Copenhagen University Hospital Kildegardsvej 28 2900 Hellerup Denmark;
Biomedical Imaging Group Rotterdam Department of Radiology and Nuclear Medicine Erasmus MC 3015 CE Rotterdam The Netherlands Department of Computer Science University of Copenhagen 2100 Copenhagen Denmark;
Convolutional neural networks; Graph neural network; Graph convolution; Airway segmentation;
机译:使用多尺度管状结构过滤器的混合气道分割及3D胸CT扫描纹理分析
机译:基于深度卷积神经网络的分割和难以定义3D CT数据转移脊柱病变的分类
机译:基于自适应的3D卷积神经网络的3D相干衍射成像的重建方法
机译:胸部CTS的呼吸道分割的联合3D unqu-Graph基于神经网络的方法
机译:基于卷积神经网络的人体个性化3D建模方法及其分类
机译:使用多尺度管状结构过滤器的混合气道分割及3D胸CT扫描纹理分析
机译:胸部CTS的呼吸道分割的联合3D unqu-Graph基于神经网络的方法
机译:开发一种全面,合理的方法确定现有路面剩余寿命的人工神经网络方法学理论评估211。