首页> 外文会议>International Workshop on Intelligent Systems and Applications;ISA 2009 >A Novel Feature Extraction Method - alpha-Based Supervised Orthogonal Projection Reduction by Affinity
【24h】

A Novel Feature Extraction Method - alpha-Based Supervised Orthogonal Projection Reduction by Affinity

机译:一种新的特征提取方法-基于亲和力的基于alpha的监督正交投影缩减

获取原文

摘要

In this paper, a novel feature extraction approach alpha-based supervised orthogonal projection reduction by affinity is proposed by introducing the idea of SLLE into the traditional method of OPRA. By adding an additional parameter a to control the degree of supervision, the proposed method can acquire some compromise between purely supervised OPRA and unsupervised OPRA and does not only keep the reservation of some flow-shaped structure during high-dimensional to low-dimensional mapping, but also gets better orthogonal projection. Experimental results based on both synthetic data and real data (human face recognition) show that the proposed method is more effective than either purely supervised OPRA or unsupervised OPRA and some other traditional feature extraction methods.
机译:通过将SLLE的思想引入传统的OPRA方法中,提出了一种基于特征的基于亲和力的基于α的监督正交投影缩减特征提取方法。通过添加一个额外的参数a来控制监督程度,该方法可以在纯监督OPRA和无监督OPRA之间取得一定的折衷,并且不仅在高维映射到低维映射期间保留某些流形结构的保留,而且可以获得更好的正交投影。基于合成数据和真实数据(人脸识别)的实验结果表明,该方法比纯监督的OPRA或无监督的OPRA以及其他一些传统特征提取方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号