首页> 外文会议>International Workshop on Intelligent Systems and Applications;ISA 2009 >A VPRS and NN Method for Wood Veneer Surface Inspection
【24h】

A VPRS and NN Method for Wood Veneer Surface Inspection

机译:VPRS和NN的单板表面检测方法。

获取原文

摘要

Variable precision rough sets (VPRS) is used to reduce the redundant features in terms of its ability of knowledge reducts. An improved network algorithm including additional momentum, self-adaptive learning rate and dynamic error segmenting is presented to solve the shortcomings of traditional BP neural network (NN). The reduced features after VPRS are fed into the improved neural network proposed to inspect the defects of surface for wood veneer, which results in short training time and a high classification accuracy with a typical application in defect inspection of wood veneer.
机译:可变精度粗糙集(VPRS)用于减少冗余特征的知识还原能力。针对传统BP神经网络(NN)的缺点,提出了一种改进的网络算法,该算法包括额外的动量,自适应学习率和动态错误分割。 VPRS后的减少特征被输入到改进的神经网络中,该神经网络被提议用于检查木皮表面缺陷,这导致训练时间短和分类精度高,这在木皮表面缺陷检测中具有典型的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号