首页> 外文会议>International Workshop on Intelligent Systems and Applications;ISA 2009 >The Upper Bound on the Number of Hidden Neurons in Multi-Valued Multi-Threshold Neural Networks
【24h】

The Upper Bound on the Number of Hidden Neurons in Multi-Valued Multi-Threshold Neural Networks

机译:多值多阈值神经网络中隐藏神经元数量的上限

获取原文

摘要

By proposing a computational algorithm, this paper gives the upper bound on the number of hidden neurons to realize multi-valued functions defined on N-points. The architecture of the network is three-layer feedforward neural network with one hidden layer. The network is composed of multi-valued multi-threshold neurons. This upper bound can help us to determine the size of network when we design learning algorithms.
机译:通过提出一种计算算法,本文给出了隐藏神经元数目的上限,以实现在N点上定义的多值函数。该网络的体系结构是具有一层隐藏层的三层前馈神经网络。该网络由多值多阈值神经元组成。这个上限可以帮助我们在设计学习算法时确定网络的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号