【24h】

Explainable Artificial Intelligence Based Heat Recycler Fault Detection in Air Handling Unit

机译:可解释的基于人工智能的空气处理机组热循环器故障检测

获取原文

摘要

We are entering a new age of AI applications where machine learning is the core technology but machine learning models are generally non-intuitive, opaque and usually complicated for people to understand. The current AI applications inability to explain is decisions and actions to end users have limited its effectiveness. The explainable AI will enable the users to understand, accordingly trust and effectively manage the decisions made by machine learning models. The heat recycler's fault detection in Air Handling Unit (AHU) has been explained with explainable artificial intelligence since the fault detection is particularly burdensome because the reason for its failure is mostly unknown and unique. The key requirement of such systems is the early diagnosis of such faults for its economic and functional efficiency. The machine learning models, Support Vector Machine and Neural Networks have been used for the diagnosis of the fault and explainable artificial intelligence has been used to explain the models' behaviour.
机译:我们正在进入AI应用程序的新纪元,其中机器学习是核心技术,但是机器学习模型通常是非直观,不透明的,对于人们来说通常很复杂。当前的AI应用程序无法解释最终用户的决策和行动,限制了其有效性。可解释的AI将使用户能够理解,信任并有效地管理机器学习模型做出的决策。空气处理单元(AHU)中热循环器的故障检测已经用可解释的人工智能进行了解释,因为故障检测特别麻烦,因为其故障原因大多是未知且独特的。此类系统的关键要求是对其经济和功能效率进行早期诊断。机器学习模型,支持向量机和神经网络已用于故障诊断,而可解释的人工智能已用于解释模型的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号