首页> 外文会议>International Work-Conference on Artificial Neural Networks >Multiple Sclerosis Detection via Wavelet Entropy and Feedforward Neural Network Trained by Adaptive Genetic Algorithm
【24h】

Multiple Sclerosis Detection via Wavelet Entropy and Feedforward Neural Network Trained by Adaptive Genetic Algorithm

机译:自适应遗传算法训练的小波熵和前馈神经网络进行多发性硬化检测

获取原文

摘要

Multiple sclerosis is a disease that damages the central nervous system. Current medical treatments can only prevent or relieve symptoms. The target of this study is to improve the detection efficiency and classification accuracy. We propose a method based on wavelet entropy and feedforward neural network trained by adaptive genetic algorithm that is implemented over 10 runs of 10-fold cross validation. In which the wavelet entropy serves as a feature extractor and the feedforward neural network is employed as a classifier. Adaptive genetic algorithm work as a training algorithm. We also use the three-level decomposition of db2 wavelet to make a frequency analysis. According to the experimental results, the global optimization capability of adaptive genetic algorithm is more powerful than ordinary genetic algorithm. Comparing to the HWT-LR method, the accuracy of our method detection is higher.
机译:多发性硬化症是损害中枢神经系统的疾病。当前的药物治疗只能预防或缓解症状。这项研究的目标是提高检测效率和分类精度。我们提出了一种基于小波熵和自适应遗传算法训练的前馈神经网络的方法,该方法在10次10​​倍交叉验证中得以实现。其中小波熵用作特征提取器,前馈神经网络用作分类器。自适应遗传算法作为训练算法。我们还使用db2小波的三级分解来进行频率分析。根据实验结果,自适应遗传算法的全局优化能力比普通遗传算法强大。与HWT-LR方法相比,我们的方法检测的准确性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号