首页> 外文会议>International Symposium on Neural Networks >Bidirectional Gated Recurrent Unit Networks for Relation Classification with Multiple Attentions and Semantic Information
【24h】

Bidirectional Gated Recurrent Unit Networks for Relation Classification with Multiple Attentions and Semantic Information

机译:具有多注意和语义信息的关系分类的双向选通递归单元网络

获取原文

摘要

Relation classification is an important part in natural language processing (NLP) field. The main task of relation classification is extracting the relations between target entities. In recent years, there are many methods for relation classification and some of them have achieved quite good results, but these methods have not given enough attention to the target words, and the semantic information of words is also lack of utilization. In order to make good use of the contextual information in the sentences as much as possible, we adopt the bidirectional gated recurrent unit networks (BGRU). On this basis, in order to focus on the computing process of target entities and target sentences, we add the multiple attention mechanism. Meanwhile, other semantic information such as the named entity and part of speech information of the word are also added as input data so as to make full use of the words' information in the corpus. We have conducted some experiments on the widely used datasets, and we got up to 3% improvement in the Fl value compared to previous optimal method.
机译:关系分类是自然语言处理(NLP)领域的重要组成部分。关系分类的主要任务是提取目标实体之间的关系。近年来,用于关系分类的方法很多,其中一些方法取得了很好的效果,但是这些方法对目标词的关注度不够,词的语义信息也缺乏利用。为了尽可能多地利用句子中的上下文信息,我们采用双向门控递归单元网络(BGRU)。在此基础上,为了关注目标实体和目标句子的计算过程,我们增加了多重关注机制。同时,还添加了其他语义信息(如单词的命名实体和词性信息)作为输入数据,以充分利用语料库中的单词信息。我们已经对广泛使用的数据集进行了一些实验,与之前的最佳方法相比,我们的Fl值提高了3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号