首页> 外文会议>International symposium on graph drawing and network visualization >The Complexity of Drawing a Graph in a Polygonal Region
【24h】

The Complexity of Drawing a Graph in a Polygonal Region

机译:在多边形区域绘制图形的复杂性

获取原文

摘要

We prove that the following problem is complete for the existential theory of the reals: Given a planar graph and a polygonal region, with some vertices of the graph assigned to points on the boundary of the region, place the remaining vertices to create a planar straight-line drawing of the graph inside the region. A special case is the problem of extending a partial planar graph drawing, which was proved NP-hard by Patrignani. Our result is one of the first showing that a problem of drawing planar graphs with straight-line edges is hard for the existential theory of the reals. The complexity of the problem is open for a simply connected region. We also show that, even for integer input coordinates, it is possible that drawing a graph in a polygonal region requires some vertices to be placed at irrational coordinates. By contrast, the coordinates are known to be bounded in the special case of a convex region, or for drawing a path in any polygonal region.
机译:我们证明以下问题对于实数的存在论是完整的:给定平面图和多边形区域,并且该图的某些顶点分配给该区域的边界上的点,将其余顶点放置以创建平面直线区域内图形的在线绘图。一种特殊情况是扩展局部平面图的问题,这已由Patrignani证明为NP-hard。我们的结果是第一个表明对于实物的存在性理论来说,绘制具有直线边缘的平面图的难题是困难的。对于简单连接的区域,问题的复杂性是开放的。我们还表明,即使对于整数输入坐标,在多边形区域绘制图形也可能需要将一些顶点放置在非理性坐标上。相比之下,已知在特殊情况下凸区域或在任何多边形区域中绘制路径时都以坐标为界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号