首页> 外文会议>International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering >Modeling of Thermomechanical Processes in the Electrode Material of the Plasmatron
【24h】

Modeling of Thermomechanical Processes in the Electrode Material of the Plasmatron

机译:等离子加速器电极材料中热机械过程的建模

获取原文
获取外文期刊封面目录资料

摘要

The associated thermoelasticity task including the equilibrium equations, the Cauchy relations and Hooke's law and the heat equation is used to study thermomechanical processes in an electrode under the action of an electric arc. The dynamics of the temperature and stressed states of the plasmatron electrode from the copper and tungsten was investigated and zones of possible brittle fracture of the material were identified. The obtained solutions showed that the high heating rates and rapid output to stationary mode characterize the electrode heating. The resistance of electrodes strongly depends on the thermophysical properties of the materials. It should be mentioned there is a sharp change in temperature along the electrode length in the area of the active zone (heating surface). An attribute of the temperature distribution are the considerable axial and radial temperature gradients, which can lead to the large thermal stresses in the electrode. The thermal action of the arc spot leads to alternating stress distribution in the wall thickness. The greatest danger is represented by the area of concentration of tensile normal stresses in the place of fixation, as well as near the core. Large thermal stresses can contribute to the formation of microcracks. The formation of cracks leads to the strong changes in the structure of the material and the distribution of the temperature in it and, as a consequence, to a decrease in the operability of the electrode.
机译:相关的热弹性任务包括平衡方程,柯西关系,胡克定律和热方程,用于研究电极在电弧作用​​下的热机械过程。研究了铜和钨等离子加速器电极的温度和应力状态的动力学,并确定了材料可能脆性断裂的区域。所获得的解决方案表明,高加热速率和快速输出到固定模式是电极加热的特征。电极的电阻在很大程度上取决于材料的热物理性质。应该提到的是,在活性区(加热表面)区域中,沿着电极长度的温度会急剧变化。温度分布的一个属性是相当大的轴向和径向温度梯度,这会导致电极中很大的热应力。电弧点的热作用导致壁厚中的应力交替分布。最大的危险由固定位置以及核心附近的拉伸法向应力集中区域表示。大的热应力会导致微裂纹的形成。裂纹的形成导致材料结构的强烈变化以及材料中温度的分布,结果导致电极的可操作性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号