首页> 外文会议>International Power Electronics Conference >Low-Complexity State-Space Based System Identification and Controller Auto-Tuning Method for Multi-Phase DC-DC Converters
【24h】

Low-Complexity State-Space Based System Identification and Controller Auto-Tuning Method for Multi-Phase DC-DC Converters

机译:基于低复杂度状态空间的多相DC-DC变换器系统辨识及控制器自动调谐方法

获取原文

摘要

The importance of online system identification (SI) in power electronics is ever increasing. It enables the tracking of system parameters, which in turn can be used for online controller tuning. Hence, SI is a key element for improving a converter's dynamic performance, stability and reliability. In this paper, a state-space based SI approach utilizing the step-adaptive least squares (SALS) estimation algorithm with observation matrix randomization is proposed. The presented concept yields an accurate state-space model of the converter while simultaneously achieving a fast convergence rate and low computational complexity. Consequently, the estimated state-space model is utilized to automatically tune a full state feedback (FSF) controller, resulting in an improved converter performance. The proposed concept is verified by a prototype system comprised of a two-phase buck converter and a field-programmable gate array (FPGA). The provided measurement results highlight the effectiveness and benefits of the presented method over state of the art z-domain estimation. It is shown that the number of required iterations is more than halved, while accuracy is improved.
机译:电力电子系统中在线系统识别(SI)的重要性日益提高。它可以跟踪系统参数,进而可以用于在线控制器调整。因此,SI是改善转换器动态性能,稳定性和可靠性的关键要素。本文提出了一种基于状态空间的SI方法,该方法利用步长自适应最小二乘估计算法与观测矩阵随机化。提出的概念产生了转换器的精确状态空间模型,同时实现了快速收敛速度和低计算复杂度。因此,利用估计的状态空间模型来自动调整全状态反馈(FSF)控制器,从而改善了转换器性能。原型系统由两相降压转换器和现场可编程门阵列(FPGA)组成,验证了提出的概念。所提供的测量结果突出了所提出方法相对于最新z域估计的有效性和好处。结果表明,所需的迭代次数减少了一半以上,同时提高了准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号