首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Bidirectional Associative Memories, Self-Organizing Maps and k-Winners-Take-All: Uniting feature extraction and topological principles
【24h】

Bidirectional Associative Memories, Self-Organizing Maps and k-Winners-Take-All: Uniting feature extraction and topological principles

机译:双向联想记忆,自组织映射和k-获胜者通吃:结合特征提取和拓扑原理

获取原文

摘要

In this paper, we introduce a network combining k-Winners-Take-All and Self-Organizing Map principles within a Feature Extracting Bidirectional Associative Memory. When compared with its ldquostrictly winner-take-allrdquo version, the modified model shows increased performance for clustering, by producing a better weight distribution and a lower dispersion level (higher density) for each given category. Moreover, because the model is recurrent, it is able to develop prototype representations strictly from exemplar encounters. Finally, just like any recurrent associative memory, the model keeps its reconstructive memory and noise filtering properties.
机译:在本文中,我们介绍了在特征提取双向关联内存中结合k-Winners-Take-All和自组织映射原理的网络。与它的“严格赢家通吃”版本相比,修改后的模型通过为每个给定类别产生更好的权重分布和更低的分散度(更高的密度),从而显示出更高的聚类性能。而且,由于该模型是递归模型,因此能够严格地从示例性遭遇中开发出原型表示。最后,就像任何循环联想记忆一样,该模型保留其重构记忆和噪声过滤属性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号