首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >One-Against-All-based multiclass SVM strategies applied to vehicle plate character recognition
【24h】

One-Against-All-based multiclass SVM strategies applied to vehicle plate character recognition

机译:基于全对抗的多类SVM策略应用于车牌字符识别

获取原文

摘要

This work describes a study of strategies for classification of characters extracted from vehicle plate images. We propose to make use of support vector machines, as well as strategies for building multiclassifiers from this model. The proposed strategies are based on the well-known one-against-all approach and, beyond multiclassifier building, they have as main idea the mapping of the outputs of the binary classifiers that constitutes the multiclassifier. We describe the tests of applying the proposed strategies to the cited problem and expose results that show a significant performance improvement.
机译:这项工作描述了从车牌图像提取的字符分类策略的研究。我们建议利用支持向量机以及根据此模型构建多分类器的策略。所提出的策略基于众所周知的“一对一”方法,除了构建多分类器之外,它们还以构成多分类器的二进制分类器的输出映射为主要思想。我们描述了将提出的策略应用于所引用问题的测试,并揭示了显示出显着性能改进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号