首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Learning the neuron functions within a neural network via Genetic Programming: Applications to geophysics and hydrogeology
【24h】

Learning the neuron functions within a neural network via Genetic Programming: Applications to geophysics and hydrogeology

机译:通过遗传编程学习神经网络中的神经元功能:在地球物理学和水文地质学中的应用

获取原文

摘要

A neural network classifier is sought. Classical neural network neurons are aggregations of a weight multiplied by an input value and then controlled via an activation function. This paper learns everything within the neuron using a variant of genetic programming called gene expression programming. That is, this paper does not explicitly use weights or activation functions within a neuron, nor bias nodes within a layer. Promising preliminary results are reported for a study of the detection of underground caves (a 1 class problem) and for a study of the interaction of water and minerals near a glacier in the Arctic (a 5 class problem).
机译:寻找一种神经网络分类器。经典的神经网络神经元是权重的乘积乘以输入值,然后通过激活函数进行控制。本文使用一种称为基因表达编程的遗传编程变体来学习神经元内的一切。也就是说,本文没有明确使用神经元内的权重或激活函数,也没有在层内偏置节点。据报道,有希望的初步结果用于研究地下洞穴(一类问题)和研究北极冰川附近水与矿物质的相互作用(一类问题)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号