首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Automated classification of dopaminergic neurons in the rodent brain
【24h】

Automated classification of dopaminergic neurons in the rodent brain

机译:啮齿动物脑中多巴胺能神经元的自动分类

获取原文

摘要

Accurate morphological characterization of the multiple neuronal classes of the brain would facilitate the elucidation of brain function and the functional changes that underlie neurological disorders such as Parkinson's diseases or Schizophrenia. Manual morphological analysis is very time-consuming and suffers from a lack of accuracy because some cell characteristics are not readily quantified. This paper presents an investigation in automating the classification of dopaminergic neurons located in the brainstem of the rodent, a region critical to the regulation of motor behaviour and is implicated in multiple neurological disorders including Parkinson's disease. Using a Carl Zeiss Axioimager Z1 microscope with Apotome, salient information was obtained from images of dopaminergic neurons using a structural feature extraction technique. A data set of 100 images of neurons was generated and a set of 17 features was used to describe their morphology. In order to identify differences between neurons, 2-dimensional and 3-dimensional image representations were analyzed. This paper compares the performance of three popular classification methods in bioimage classification (Support Vector Machines (SVMs), Back Propagation Neural Networks (BPNNs) and Multinomial Logistic Regression (MLR)), and the results show a significant difference between machine classification (with 97% accuracy) and human expert based classification (72% accuracy).
机译:大脑多种神经元类别的准确形态学表征将有助于阐明脑功能以及构成神经系统疾病(如帕金森氏病或精神分裂症)的功能变化。手工形态分析非常耗时,并且由于某些细胞特征不容易量化而缺乏准确性。本文提出了一项自动化研究,该研究自动化了位于啮齿动物脑干中的多巴胺能神经元的分类,该区域对运动行为的调节至关重要,并且涉及包括帕金森氏病在内的多种神经系统疾病。使用带有Apotome的Carl Zeiss Axioimager Z1显微镜,使用结构特征提取技术从多巴胺能神经元的图像中获取显着信息。生成了100个神经元图像的数据集,并使用17个特征集描述了它们的形态。为了识别神经元之间的差异,分析了2维和3维图像表示。本文比较了三种流行的分类方法在生物图像分类中的性能(支持向量机(SVM),反向传播神经网络(BPNN)和多项式逻辑回归(MLR)),结果显示,机器分类之间的显着差异(97准确度百分比)和基于专家的分类(准确度为72%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号