首页> 外文会议>International Joint Conference on Computational Intelligence >SO(2) approximate identity neural networks are universal approximators
【24h】

SO(2) approximate identity neural networks are universal approximators

机译:SO(2)近似身份神经网络是通用近似器

获取原文

摘要

The idea of approximation functions on the rotation group has important applications in many fields of science and engineering. This study is devoted to explore the universal approximation capability of a class of three layer feedforward artificial neural networks on the special orthogonal rotation group SO(2). To do this end, we propose the concept of SO(2) approximate identity. Moreover, we prove a theorem that provides a connection between SO(2) approximate identity and uniform convergence in the space of continuous functions on the rotation group SO(2). Furthermore, we apply this theorem to set a main theorem. The main theorem shows that three layer feedforward SO(2) approximate identity neural networks are universal approximators in the space of continuous functions on the rotation group SO(2). The construction of the proof of the main theorem utilizes a method based on the notion of epsilon-net.
机译:旋转组上的逼近函数的概念在科学和工程学的许多领域中都有重要的应用。这项研究致力于探索特殊正交旋转群SO(2)上一类三层前馈人工神经网络的通用逼近能力。为此,我们提出了SO(2)近似身份的概念。此外,我们证明了一个定理,该定理在旋转群SO(2)上的连续函数空间中提供了SO(2)近似恒等式和均匀收敛之间的联系。此外,我们应用该定理设定一个主定理。主定理表明,三层前馈SO(2)近似同一性神经网络是旋转群SO(2)上连续函数空间中的通用逼近器。主定理证明的构造利用了一种基于epsilon-net概念的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号