首页> 外文会议>International Joint Conference on Autonomous Agents and Multiagent Systems >Secure Computation for Combinatorial Auctions and Market Exchanges
【24h】

Secure Computation for Combinatorial Auctions and Market Exchanges

机译:组合拍卖和市场交易的安全计算

获取原文

摘要

It was recently shown possible to solve (M+1)^st price single item auctions without revealing absolutely any secret except for the solution. Namely, with vMB-share [2], the seller and the buyer only learn each others identity and learn the selling price for a chosen (M+1)^st pricing scheme. No trusted party is necessary. In this paper we show how vMB-share can be extended for the clearing of combinatorial negotiation problems with several items, buyers and sellers. We first show how the more general problem can be reduced to a virtual form, form that is relatively similar to the single item auctions, by having a virtual bidder for each candidate allocation. Then, some modifications in the cryptographic techniques of vMB-share are made such that it can offer a solution to problems in virtual form. As explained in the paper, it is expected that a secure solution hiding details that can be inferred from the running time will have an exponential computation cost. Our preliminary experimental evaluation shows that some small negotiations can nevertheless be solved with acceptable effort.
机译:最近显示出可以解决(M + 1)st价格单件拍卖而无需透露除解决方案外的任何秘密。即,对于vMB份额[2],买卖双方仅了解彼此的身份,并了解所选的(M + 1)st定价方案的售价。无需任何受信方。在本文中,我们展示了如何扩展vMB份额,以解决与多个项目(包括买家和卖家)的组合谈判问题。我们首先说明如何通过为每个候选分配分配虚拟投标人,将更普遍的问题简化为虚拟形式,该形式与单项拍卖相对类似。然后,对vMB共享的密码技术进行了一些修改,从而可以为虚拟形式的问题提供解决方案。如本文所述,可以预期,一个安全的解决方案隐藏了可以从运行时间推断出的细节,将带来指数级的计算成本。我们的初步实验评估表明,仍可以通过可接受的努力解决一些小小的谈判。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号