首页> 外文会议>International Geoscience and Remote Sensing Symposium >Missing data reconstruction and anomaly detection in crop development using agronomic indicators derived from multispectral satellite images
【24h】

Missing data reconstruction and anomaly detection in crop development using agronomic indicators derived from multispectral satellite images

机译:使用从多光谱卫星图像获得的农艺指标,在作物发育过程中丢失数据重建和异常检测

获取原文

摘要

This paper studies a new three-step procedure for detecting anomalies in crop development using temporal indicators derived from multispectral satellite images. These anomalies may result from seeding problems, heterogeneity, deficiency and stress. The first step estimates different biophysical and statistical parameters associated with these parameters from the observed images. In a second step, missing data that arise from the existence of clouds or limited coverage in the satellite image are reconstructed. Finally, the mean shift algorithm is used as an unsupervised classifier to detect anomalies in these reconstructed data. The proposed procedure is evaluated using agronomic indicators estimated from SPOT 5 Take 5 satellite images from the Beauce area in France.
机译:本文研究了一种新的三步骤程序,该程序使用从多光谱卫星图像获得的时间指标来检测作物发育中的异常。这些异常可能是由播种问题,异质性,缺乏和压力引起的。第一步,根据观察到的图像估算与这些参数相关的不同生物物理和统计参数。在第二步中,重建由于卫星图像中云的存在或覆盖范围有限而引起的丢失数据。最后,将均值漂移算法用作无监督分类器,以检测这些重构数据中的异常。使用SPOT 5估计的农艺指标评估拟议的程序。5拍摄法国Beauce地区的5幅卫星图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号