首页> 外文会议>International Geoscience and Remote Sensing Symposium >Ensemble classifier based training data refinement technique for classification of remotely sensed optical images
【24h】

Ensemble classifier based training data refinement technique for classification of remotely sensed optical images

机译:基于集成分类器的训练数据细化技术对遥感光学图像的分类

获取原文

摘要

In this study, an ensemble classifier based method is investigated to detect and discard mislabelled training samples from training set. To decide, whether to discard a sample from the training set, majority voting is considered for an ensemble constructed using kNN, RBF neural network and SVM classifier which are diverse in their decision making. Further, this method is compared with conventional statistical anomaly detection based filter and multi-objective Genetic Algorithm (GA) based filters, in terms of its ability to handle the number of mislabeled samples present in the training set. The performance of all the filters is tested at different levels of mislabelling. At 95% confidence level, the ensemble classifier based filter is the best among all the implemented filters. It can detect and remove mislabeled training samples even if 40% training samples are mislabeled.
机译:在这项研究中,研究了一种基于整体分类器的方法来检测和丢弃训练集中标记错误的训练样本。为了决定是否从训练集中丢弃样本,对于使用kNN,RBF神经网络和SVM分类器构建的集成群,考虑对其进行决策时采用多数投票。此外,就其处理训练集中存在的错误标记样本数量的能力而言,该方法与基于常规统计异常检测的过滤器和基于多目标遗传算法(GA)的过滤器进行了比较。所有过滤器的性能均在贴错标签的不同级别进行了测试。在95%的置信度下,基于集成分类器的过滤器是所有已实施过滤器中最好的。即使错误标记了40%的训练样本,它也可以检测并删除标记错误的训练样本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号