首页> 外文会议>International Geoscience and Remote Sensing Symposium >Spatial-temporal conditional random field based model for crop recognition in tropical regions
【24h】

Spatial-temporal conditional random field based model for crop recognition in tropical regions

机译:基于时空条件随机场的热带地区作物识别模型

获取原文

摘要

This work presents a spatio-temporal Conditional Random Field (CRF) based model for crop recognition from multi-temporal remote sensing image sequences. The association potential at each image site is based on the class posterior probabilities computed by a Random Forest (RF) classifier given the features at the corresponding site. A contrast-sensitive Potts model is used as a label smoothing method in the spatial domain, whereas the interactions in the temporal domain are modeled based on expert knowledge about the possible transitions between adjacent epochs. The CRF based model was tested for crop mapping in two subtropical areas based on a sequences of 9 Landsat and 14 Sentinel-1 images from Ipuã, São Paulo and Campo Verde, Mato Grosso, respectively, two municipalities in Brazil. The experiments showed significant improvements of the accumulated F1 score per class against a mono-temporal CRF approach of up to 50% and 75% for a total of 8 and 11 classes using Optical and SAR images respectively.
机译:这项工作提出了一种基于时空条件随机场(CRF)的模型,用于从多时相遥感影像序列中识别作物。在给定相应位置的特征的情况下,每个图像位置处的关联电位基于随机森林(RF)分类器计算的类后验概率。对比敏感的Potts模型在空间域中用作标签平滑方法,而时域中的交互作用是基于有关相邻历元之间可能过渡的专家知识来建模的。基于CRF的模型在两个亚热带地区进行了作物制图测试,分别基于来自巴西两个城市的Ipuã,SãoPaulo和Campo Verde,Mato Grosso的9张Landsat和14张Sentinel-1图像序列。实验表明,分别使用光学和SAR图像,相对于单时CRF方法,针对总共8个和11个类别的单时CRF方法,累积的F1分数有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号