首页> 外文会议>International Geoscience and Remote Sensing Symposium >Real-time scene understanding for UAV imagery based on deep convolutional neural networks
【24h】

Real-time scene understanding for UAV imagery based on deep convolutional neural networks

机译:基于深度卷积神经网络的无人机图像实时场景理解

获取原文

摘要

Real-time scene understanding is important for many applications of Unmanned Aerial Vehicles (UAVs) such as reconnaissance, surveillance, mapping, and infrastructure inspection. With the recent growth of computation power, it is feasible to use Deep Learning for real-time applications. Deep Convolutional Neural Networks (CNNs) have emerged as a powerful model for classifying image content, and are widely considered in the computer vision community to be the de facto standard approach for most problems. Current Deep learning approaches for image classification and object detection are designed and evaluated on lab setting human-centric photographs taken horizontally from a height of 1-2 meters. UAV images are taken vertically in high altitude; therefore the objects of interest are relatively small with a skewed vantage point which creates a real challenge in detection and classification of such images. Here we present a deep convolutional approach for classification of Aerial imagery taken by UAV. We applied our network on optical imagery taken with UAV RS-16 from Port Mansfield, TX. Experimental results in comparison with ground-truth show 93.6 % accuracy for UAV image classification.
机译:实时场景理解对于无人机(UAV)的许多应用非常重要,例如侦察,监视,制图和基础设施检查。随着最近计算能力的增长,将深度学习用于实时应用程序是可行的。深度卷积神经网络(CNN)已经成为对图像内容进行分类的强大模型,并且在计算机视觉界被广泛认为是大多数问题的事实上的标准方法。当前用于图像分类和对象检测的深度学习方法是在实验室设置的以人为中心的水平1-2米高的照片上设计和评估的。无人机图像是在高空垂直拍摄的;因此,感兴趣的物体相对较小,具有有利的倾斜角度,这在检测和分类此类图像时提出了真正的挑战。在这里,我们为无人机拍摄的航空影像提供了一种深度卷积方法。我们将网络应用到了得克萨斯州Port Mansfield的UAV RS-16拍摄的光学图像上。与地面真相比较的实验结果表明,无人机图像分类的准确性为93.6 \%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号