首页> 外文会议>International Computing and Combinatorics Conference >Lower Bounds for Small Ramsey Numbers on Hypergraphs
【24h】

Lower Bounds for Small Ramsey Numbers on Hypergraphs

机译:超图上小的Ramsey数的下界

获取原文

摘要

The Ramsey number r_k(p,q) is the smallest integer N that satisfies for every red-blue coloring on k-subsets of [N], there exist p integers such that any k-subset of them is red, or q integers such that any k-subset of them is blue, fn this paper, we study the lower bounds for small Ramsey numbers on hypergraphs by constructing counterexamples and recurrence relations. We present a new algorithm to prove lower bounds for r_k(k + 1,k + 1). In particular, our algorithm is able to prove r_5(6,6) > 72, where there is no lower bound on 5-hypcrgraphs before this work. We also provide several recurrence relations to calculate lower bounds based on lower bound values on smaller p and q. Combining both of them, we achieve new lower bounds for r_k(p,q) on arbitrary p, q, and k ≥ 4.
机译:拉姆西数r_k(p,q)是满足[N]的k个子集上每种红蓝色着色的最小整数N,存在p个整数,使得它们的任何k个子集都是红色,或q个整数,例如因为它们的任何k子集都是蓝色,因此在本文中,我们通过构造反例和递归关系来研究超图上小的Ramsey数的下界。我们提出了一种新算法来证明r_k(k + 1,k + 1)的下界。特别地,我们的算法能够证明r_5(6,6)> 72,在此之前5-hypcrgraphs没有下界。我们还提供了几种递归关系,以基于较小p和q上的下界值来计算下界。将它们结合起来,我们可以在任意p,q和k≥4的情况下达到r_k(p,q)的新下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号