【24h】

An Improved Particle Swarm Optimization Algorithm Combined with Invasive Weed Optimization

机译:结合杂草优化的改进粒子群算法

获取原文

摘要

This paper presents a hybrid algorithm based on the invasive weed optimization (IWO) and particle swarm optimization (PSO), named IW-PSO. By incorporating the reproduction and spatial dispersal of IWO into the traditional PSO, exploration and exploitation of the PSO can be enhanced and well balanced to achieve better performance. In a set of 15 test function problem, computational results, preceded by analysis and selection of IW-PSO parameters, show that IW-PSO can improve the search performance. In the other comparative experiment with fixed iteration, the IW-PSO algorithm is compared with various more up-to-date improved PSO procedures appearing in the literature. Comparative results demonstrate that IW-PSO can generate quite competitive quality solution in stability, accuracy and efficiency. As evidenced by the overall assessment based on two kinds of computational experience, IW-PSO can effectively obtain higher quality solutions so as to avoid being trapped in local optimum.
机译:本文提出了一种基于入侵杂草优化(IWO)和粒子群优化(PSO)的混合算法,称为IW-PSO。通过将IWO的复制和空间分散纳入传统的PSO中,可以增强PSO的勘探和开发并达到良好的平衡,以实现更好的性能。在由15个测试函数组成的一组问题中,计算结果以及对IW-PSO参数的分析和选择之后,表明IW-PSO可以提高搜索性能。在另一个具有固定迭代的比较实验中,将IW-PSO算法与文献中出现的各种更新的改进PSO程序进行了比较。比较结果表明,IW-PSO可以在稳定性,准确性和效率方面提供颇具竞争力的质量解决方案。基于两种计算经验的总体评估表明,IW-PSO可以有效地获得更高质量的解决方案,从而避免陷入局部最优状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号