首页> 外文会议>International Conference on the Frontiers and Advances in Data Science >Big data challenges in transportation: A case study of traffic volume count from massive Radio Frequency Identification(RFID) data
【24h】

Big data challenges in transportation: A case study of traffic volume count from massive Radio Frequency Identification(RFID) data

机译:运输中的大数据挑战:以海量射频识别(RFID)数据为基础的交通量计数案例研究

获取原文

摘要

We are in an advancing stage of data acquisition and an even greater dynamic stage of dealing with big data. Data sizes have evolved over the years from a few kilobytes to Exabyte. The transportation engineer has also been caught up in the big data era and to efficiently analyze this massive data for maximum benefits, various challenges relating to data acquisition, data storage, data cleaning, data analysis and visualization has to be overcome. In this paper, we discuss these challenges and approaches to managing them with respect to massive Radio Frequency Identification data for traffic volume count in Nanjing, China. We recommended software, use analytical and visualization techniques like aggregation, graduated circular symbols and traffic count map to overcome big data challenges to produce peak hour, offpeak hour traffic volume counts and traffic count maps showing locations of low and high volume traffic. The paper, therefore, contributes to the management of big data by transportation engineers for traffic volume and congestion analysis.
机译:我们正处于数据采集的发展阶段,并且处于处理大数据的更大的动态阶段。这些年来,数据大小已经从几千字节发展到十亿字节。运输工程师还被卷入了大数据时代,并且要有效地分析这些海量数据以获得最大利益,必须克服与数据采集,数据存储,数据清理,数据分析和可视化有关的各种挑战。在本文中,我们将针对大量的射频识别数据(针对中国南京的交通量计数),讨论这些挑战和管理方法。我们推荐软件,并使用分析和可视化技术(例如聚合,刻度圆形符号和流量计数图)来克服大数据挑战,以产生高峰时段,非高峰时段流量数量和显示低流量位置和高流量位置的流量计数图。因此,本文有助于交通工程师进行大数据管理,以进行交通量和拥堵分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号