首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Optimized detector for closed-loop devices for neurostimulation
【24h】

Optimized detector for closed-loop devices for neurostimulation

机译:用于神经刺激的闭环设备的优化检测器

获取原文

摘要

Brain machine interfacing (BMI) needs continuous analyses of ongoing brain activity. For a successful interaction, related brain activities and events should be reliably detected; using various approaches including machine learning techniques. To this end, a variety of characteristic signal features as well as different types of classifiers can be used. One possible application of such an interaction is for epilepsy patients. A novel approach for the group of patients with difficult to treat epilepsy is the application of electrical stimulation in the early stages of the seizure generation in a closed-loop manner which can be realized in an implant. Herein, we show results of studies on the detection of epileptic seizure patterns in human intracranial long-term recordings and their dependence on selection parameters which have to be chosen for the realization in an implant. Random forest classifier is shown to allow an energy-efficient implementation of algorithm which uses a set of time and frequency domain features for seizure detection. In this study, we searched for further possibilities to optimize the performance of our algorithm and made it more robust to signal variations for online applications. In this regard, we studied the effects of detection time window, raw data normalization, feature scaling and electrode montages on performance of random forest classifier. Results of this optimization process indicate a decrease of detection delay, which is crucial to successful seizure suppression, and increased sensitivity; while preserving the false positive detections low compared to presently available closed-loop intervention in epilepsy.
机译:脑机接口(BMI)需要对正在进行的脑活动进行连续分析。为了成功进行交互,应可靠地检测相关的大脑活动和事件;使用各种方法,包括机器学习技术。为此,可以使用多种特征信号特征以及不同类型的分类器。这种相互作用的一种可能的应用是用于癫痫患者。对于难治性癫痫患者的一种新方法是在癫痫发作的早期以闭环方式应用电刺激,这可以在植入物中实现。在这里,我们显示了对人类颅内长期记录中癫痫发作模式的检测及其对选择参数的依赖性的研究结果,这些参数必须在植入物中实现。示出了随机森林分类器以允许算法的节能实现,该算法使用一组时域和频域特征来进行癫痫发作检测。在这项研究中,我们寻求了进一步的可能性来优化算法的性能,并使其对于在线应用的信号变化更加健壮。在这方面,我们研究了检测时间窗,原始数据归一化,特征缩放和电极蒙太奇对随机森林分类器性能的影响。优化过程的结果表明,检测延迟的减少对成功地抑制癫痫发作至关重要,并且灵敏度提高。与现存的癫痫闭环干预相比,可以将假阳性检测率保持在较低水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号