首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Towards predictions of large dynamic systems' behavior using reduced-order modeling and interval computations
【24h】

Towards predictions of large dynamic systems' behavior using reduced-order modeling and interval computations

机译:使用降阶建模和区间计算来预测大型动态系统的行为

获取原文

摘要

The ability to conduct fast and reliable simulations of dynamic systems is of special interest to many fields of operations. Such simulations can be very complex and, to be thorough, involve millions of variables, making it prohibitive in CPU time to run repeatedly for many different configurations. Reduced-Order Modeling (ROM) provides a concrete way to handle such complex simulations using a realistic amount of resources. However, uncertainty is hardly taken into account. Changes in the definition of a model, for instance, could have dramatic effects on the outcome of simulations. Therefore, neither reduced models nor initial conclusions could be 100% relied upon. In this research, Interval Constraint Solving Techniques (ICST) are employed to handle and quantify uncertainty. The goal is to identify key features of a given dynamical phenomenon in order to be able to propagate the characteristics of the model forward and predict its future behavior to obtain 100% guaranteed results. This is specifically important in applications, as a reliable understanding of a developing situation could allow for preventative or palliative measures before a situation aggravates.
机译:进行动态系统快速可靠仿真的能力是许多操作领域特别感兴趣的。这样的模拟可能非常复杂,更彻底的是,涉及数百万个变量,这使得CPU时间无法针对许多不同的配置重复运行。降序建模(ROM)提供了一种使用实际资源来处理此类复杂模拟的具体方法。但是,几乎不考虑不确定性。例如,模型定义的更改可能会对模拟结果产生重大影响。因此,简化模型和初始结论都不能100%依赖。在这项研究中,采用区间约束求解技术(ICST)来处理和量化不确定性。目的是确定给定动力学现象的关键特征,以便能够向前传播模型的特征并预测其未来行为,以获得100%的保证结果。这在应用中特别重要,因为对发展中情况的可靠理解可以在情况恶化之前采取预防或姑息措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号