【24h】

Using Common Enemy Graphs to Identify Communities of Coordinated Social Media Activity

机译:使用常见的敌人图来识别社交媒体活动协调的社区

获取原文

摘要

Increased use of and reliance on social media has led to a responsive rise in the creation of automated accounts on such platforms. Recent approaches to identification of individual automated accounts has relied on machine learning methods utilizing features drawn predominantly from text content and profile metadata. In this work we explore a novel use of graph theoretic measures, specifically common enemy graphs, to identify and characterize groups of accounts exhibiting shared behavior in online social media, particularly those exhibiting characteristics of automation and/or potential coordination. In addition, we develop edge weight variants of fuzzy competition graphs to further characterize common group behavior of automated accounts within subnetworks of social media ecosystems.
机译:对社交媒体的越来越多的使用和依赖导致在这种平台上创建自动帐户的反应迅速。用于识别单个自动帐户的最新方法依赖于机器学习方法,该方法利用了主要从文本内容和配置文件元数据中提取的功能。在这项工作中,我们探索了一种新颖的图形理论方法,特别是常见的敌人图形,以识别和表征在在线社交媒体中表现出共同行为的帐户组,特别是那些表现出自动化和/或潜在协调特征的帐户组。此外,我们开发了模糊竞争图的边缘权重变量,以进一步表征社交媒体生态系统子网内自动帐户的常见群体行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号