首页> 外文会议>International Conference on Similarity Search and Applications >Fast and Exact Nearest Neighbor Search in Hamming Space on Full-Text Search Engines
【24h】

Fast and Exact Nearest Neighbor Search in Hamming Space on Full-Text Search Engines

机译:在全文搜索引擎上的汉明空间中进行快速精确的最近邻搜索

获取原文

摘要

A growing interest has been witnessed recently from both academia and industry in building nearest neighbor search (NNS) solutions on top of full-text search engines. Compared with other NNS systems, such solutions are capable of effectively reducing main memory consumption, coherently supporting multi-model search and being immediately ready for production deployment. In this paper, we continue the journey to explore specifically how to empower full-text search engines with fast and exact NNS in Hamming space (i.e., the set of binary codes). By revisiting three techniques (bit operation, subs-code filtering and data preprocessing with permutation) in information retrieval literature, we develop a novel engineering solution for full-text search engines to efficiently accomplish this special but important NNS task. In the experiment, we show that our proposed approach enables full-text search engines to achieve significant speed-ups over its state-of-the-art term match approach for NNS within binary codes.
机译:最近,学术界和工业界都越来越关注在全文搜索引擎之上构建最近邻搜索(NNS)解决方案的兴趣。与其他NNS系统相比,此类解决方案能够有效减少主内存消耗,一致地支持多模型搜索并立即准备好进行生产部署。在本文中,我们将继续探索如何在汉明空间(即二进制代码集)中为具有快速准确的NNS的全文搜索引擎赋能的旅程。通过回顾信息检索文献中的三种技术(位操作,子代码过滤和带置换的数据预处理),我们为全文搜索引擎开发了一种新颖的工程解决方案,以有效地完成这一特殊但重要的NNS任务。在实验中,我们证明了我们提出的方法使全文本搜索引擎能够以其最新的二进制代码内NNS术语匹配方法获得明显的提速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号