首页> 外文会议>International Conference on Sensor Networks and Signal Processing >Short-Term Traffic Flow Prediction Based on Combination Model of Xgboost-Lightgbm
【24h】

Short-Term Traffic Flow Prediction Based on Combination Model of Xgboost-Lightgbm

机译:基于Xgboost-Lightgbm组合模型的短期交通流量预测

获取原文

摘要

In modern intelligent transportation system, traffic control and traffic congestion management are main components of it. Real-time and accurate short-term traffic flow prediction is the precondition and key to realizing traffic control and traffic congestion management. In order to improve the accuracy of short-term traffic flow prediction, a combined model prediction method is proposed in this paper which is based on Xgboost and LightGBM algorithms. First, the short-term traffic flow data is preprocessed and features are sampled. Then, according to different characteristics, different prediction models are constructed by using Xgboost and LightGBM algorithms. Finally, these models are merged to generate the final model. Appling this model for prediction, the average travel time of the road can be obtained to predict the traffic flow and reflect road congestion. Experimental results show that the combined model has higher prediction accuracy than a single model, and it is an effective short-term traffic flow prediction method.
机译:在现代智能交通系统中,交通控制和交通拥堵管理是其主要组成部分。实时,准确的短期交通流量预测是实现交通控制和交通拥堵管理的前提和关键。为了提高短期交通流量预测的准确性,提出了一种基于Xgboost和LightGBM算法的组合模型预测方法。首先,对短期交通流数据进行预处理,并对特征进行采样。然后,根据不同的特性,使用Xgboost和LightGBM算法构造不同的预测模型。最后,将这些模型合并以生成最终模型。应用该模型进行预测,可以获得道路的平均行驶时间,以预测交通流量并反映道路拥堵。实验结果表明,组合模型具有比单个模型更高的预测精度,是一种有效的短期交通流量预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号