首页> 外文会议>International conference on semantic systems >Evaluating Generalized Path Queries by Integrating Algebraic Path Problem Solving with Graph Pattern Matching
【24h】

Evaluating Generalized Path Queries by Integrating Algebraic Path Problem Solving with Graph Pattern Matching

机译:通过将代数路径问题与图模式匹配相集成来评估广义路径查询

获取原文

摘要

Path querying on Semantic Networks is gaining increased focus because of its broad applicability. Some graph databases offer support for variants of path queries e.g. shortest path. However, many applications have the need for the set version of various path problem i.e. finding paths between multiple source and multiple destination nodes (subject to different kinds of constraints). Further, the sets of source and destination nodes may be described declaratively as patterns, rather than given explicitly. Such queries lead to the requirement of integrating graph pattern matching with path problem solving. There are currently existing limitations in support of such queries (either inability to express some classes, incomplete results, inability to complete query evaluation unless graph patterns are extremely selective, etc). In this paper, we propose a framework for evaluating generalized path queries - gpqs that integrate an algebraic technique for solving path problems with SPARQL graph pattern matching. The integrated algebraic querying technique enables more scalable and efficient processing of gpqs, including the possibility of support for a broader range of path constraints. We present the approach and implementation strategy and compare performance and query expressiveness with a popular graph engine.
机译:语义网络上的路径查询由于其广泛的适用性而越来越受到关注。一些图形数据库为路径查询的变体提供支持,例如最短路径。然而,许多应用需要各种路径问题的设定版本,即在多个源节点和多个目的节点之间寻找路径(受到不同种类的约束)。此外,源节点和目标节点的集合可以声明性地描述为模式,而不是明确给出。这种查询导致需要将图形模式匹配与路径问题解决集成在一起。当前对此类查询的支持存在局限性(无法表达某些类,不完整的结果,除非图形模式具有极高的选择性,否则无法完成查询评估)。在本文中,我们提出了一种用于评估广义路径查询的框架-gpqs,该框架集成了代数技术以解决SPARQL图形模式匹配的路径问题。集成的代数查询技术可实现gpq的更可扩展和更有效的处理,包括支持更广泛的路径约束的可能性。我们介绍了这种方法和实现策略,并将性能和查询表达能力与流行的图引擎进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号