首页> 外文会议>International Conference on Robots Intelligent System >Network Anomaly Traffic Detection Algorithm Based on SVM
【24h】

Network Anomaly Traffic Detection Algorithm Based on SVM

机译:基于支持向量机的网络异常流量检测算法

获取原文

摘要

In order to guarantee the high level of network security and improve the user experience of the network, in this paper, we propose an effective network anomaly traffic detection algorithm. Firstly, six types of network features are used in our work, such as 1) Number of source IP address, 2) Number of source port number, 3) Number of destination IP address, 4) Number of destination port number, 5) Number of packet type, 6) Number of distinct packets with same packet size. Afterwards, we discuss how to generate normalized entropy for the features which are exploited in the network anomaly traffic detection. Secondly, we convert the network traffic anomaly detection problem to a classification problem, and proposed a hybrid PSO-SVM model to solve it. Finally, experimental results demonstrate that the proposed method can detect different network traffic anomaly behaviors with high accuracy.
机译:为了保证较高的网络安全性并改善网络的用户体验,本文提出了一种有效的网络异常流量检测算法。首先,在我们的工作中使用了六种类型的网络功能,例如1)源IP地址的数量,2)源端口号的数量,3)目标IP地址的数量,4)目标端口号的数量,5)数字6)相同数据包大小的不同数据包的数量。之后,我们讨论如何为网络异常流量检测中利用的特征生成归一化熵。其次,将网络流量异常检测问题转化为分类问题,并提出了一种混合的PSO-SVM模型来解决。最后,实验结果表明,该方法能够准确地检测出不同的网络流量异常行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号