首页> 外文会议>International Conference on Power System Technology >Wind Power Day-ahead Prediction Based on LSSVM With Fruit Fly Optimization Algorithm
【24h】

Wind Power Day-ahead Prediction Based on LSSVM With Fruit Fly Optimization Algorithm

机译:基于果蝇优化算法的LSSVM风电超前预报

获取原文

摘要

The accuracy of least squares support vector machine (LSSVM) for wind power prediction is greatly affected by its parameters. To solve the problem of the man-made choice of the parameter values, a model for day-ahead wind power prediction based on fruit fly optimization algorithm (FOA) is proposed in the paper. For day-ahead prediction, numerical weather prediction (NWP) including wind speed, wind direction, temperature and atmospheric pressure has great influence on wind power. LSSVM is adopted to model the non-linear relationship in the study. FOA is employed to search for the optimal parameters of LSSVM. The simulation show that the new method based on FOA has better prediction properties than the model based on particle swarm optimization.
机译:最小二乘支持向量机(LSSVM)进行风电功率预测的准确性受其参数的影响很大。为解决参数值的人为选择问题,提出了一种基于果蝇优化算法(FOA)的日前风电预测模型。对于日前预报,包括风速,风向,温度和大气压力在内的数值天气预报(NWP)对风能有很大影响。采用LSSVM对研究中的非线性关系进行建模。 FOA用于搜索LSSVM的最佳参数。仿真表明,基于FOA的新方法比基于粒子群优化的模型具有更好的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号