首页> 外文会议>International Conference on Power System Technology >Calculation Method of the Line Loss Rate in Low-voltage Transformer District Based on PCA and K-Means Clustering and Support Vector Machine
【24h】

Calculation Method of the Line Loss Rate in Low-voltage Transformer District Based on PCA and K-Means Clustering and Support Vector Machine

机译:基于PCA和K均值聚类与支持向量机的低压变压器区域线损率的计算方法。

获取原文

摘要

The main problems faced in the calculation of the line loss rate in the transformer district are the huge power network structure, numerous nodes and lacking of accurate basic parameter and operating data. With the improvement of the automation level, more data can be collected to calculate the line loss rate. Based on the obtained data, analyzing the influencing factors of the line loss from the three aspects which contain the operation state, the line attribute and the user attribute. Using PCA principal component analysis method to transform the influencing factor into a set of linear unrelated variables which called the principal component factor. Based on the new independent principal component factors, the improved K-mean algorithm is used to cluster the transformer district. For each category, the support vector machine regression prediction method is used to establish the mapping relationship between the line loss rate and the principal components of the influencing factors. When calculating the loss of other lines, it is only necessary to determine the sample category to which the line belongs and select the corresponding support vector machine prediction model to quickly obtain a more accurate calculation of the line loss rate. The validity of the proposed methodology is verified by 170 low-voltage transformer districts. The result show that the proposed algorithm has fast convergence speed and high accuracy. It can quickly determine the line loss rate based and provide a basis for line loss management.
机译:变压器区线损率计算面临的主要问题是电网结构庞大,节点众多,缺乏准确的基本参数和运行数据。随着自动化水平的提高,可以收集更多数据来计算线损率。根据获得的数据,从操作状态,线路属性和用户属性三个方面分析线路损耗的影响因素。使用PCA主成分分析方法将影响因子转换为一组线性无关变量,称为主成分因子。基于新的独立主成分因子,使用改进的K-mean算法对变压器区进行聚类。对于每个类别,使用支持向量机回归预测方法来建立线损率与影响因素的主要成分之间的映射关系。在计算其他线路的损耗时,只需确定该线路所属的样本类别并选择相应的支持向量机预测模型即可快速获得更准确的线路损耗率计算。 170个低压变压器区验证了该方法的有效性。结果表明,该算法收敛速度快,精度高。它可以基于快速确定线损率,并为线损管理提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号