首页> 外文会议>International Conference on Power System Technology >An Integrated Generation-Compensation optimization Strategy for Enhanced Short-Term Voltage Security of Large-Scale Power Systems Using Multi-Objective Reinforcement Learning Method
【24h】

An Integrated Generation-Compensation optimization Strategy for Enhanced Short-Term Voltage Security of Large-Scale Power Systems Using Multi-Objective Reinforcement Learning Method

机译:基于多目标强化学习方法的大型电力系统短期电压安全性发电补偿优化综合策略

获取原文

摘要

High penetrations of industrial loads have placed significant pressures on short-term voltage security. This paper proposes an integrated generation-compensation optimization strategy, which coordinates the generators and the switchable capacitor banks to enhance short-term voltage security as a multi-objective dynamic optimization (MODO) model. This model is established containing dynamics, power flow balances, and security constraints to minimize the voltage deviation and the cost of control strategy. The differential-algebra equations are converted into algebra equations using the Radau collocation method. Furthermore, a novel multi-objective reinforcement learning (MORL) method is utilized to mitigate the computational burdens and to obtain Pareto optimal solutions by filtering the dominated solutions. Compared with conventional MORL methods, the proposed MORL method divides the full feasible region into several small independent regions to reduce and eliminate the searching for Pareto optimal solutions. Meanwhile, the state functions of MORL are redefined, and the state sensitivities are introduced to judge whether the trial and learning accumulate sufficient knowledge. Moreover, the Pareto optimal solutions are further improved by introducing several possible solutions. Finally, the tradeoff solution is obtained based on Fuzzy decision-making strategy. The effectiveness and efficiency of the MORL method are verified by numerical simulations on a provincial 748-bus power system.
机译:工业负载的高渗透率给短期电压安全带来了巨大压力。本文提出了一种集成的发电补偿优化策略,作为多目标动态优化(MODO)模型,该算法协调发电机和可切换电容器组,以增强短期电压安全性。建立包含动态,潮流平衡和安全约束的模型,以最小化电压偏差和控制策略的成本。使用Radau搭配方法将微分代数方程转换为代数方程。此外,一种新颖的多目标强化学习(MORL)方法被用来减轻计算负担,并通过过滤主导解来获得Pareto最优解。与传统的MORL方法相比,提出的MORL方法将整个可行区域划分为几个小的独立区域,以减少和消除对Pareto最优解的搜索。同时,重新定义了MORL的状态函数,并引入了状态敏感性来判断试验和学习是否积累了足够的知识。此外,通过引入几种可能的解决方案进一步改善了帕累托最优解决方案。最后,基于模糊决策策略获得权衡解。在省级748总线电力系统上的数值模拟验证了MORL方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号