首页> 外文会议>International conference on Pattern recognition applications and methods >Emotion Recognition Using Neighborhood Components Analysis and ECG/HRV-Based Features
【24h】

Emotion Recognition Using Neighborhood Components Analysis and ECG/HRV-Based Features

机译:使用邻域成分分析和基于ECG / HRV的功能进行情绪识别

获取原文

摘要

Previous research showed that supervised dimensionality reduction using Neighborhood Components Analysis (NCA) enhanced the performance of 3-class problem emotion recognition using ECG only where features were the statistical distribution of dominant frequencies and the first differences after applying bivariate empirical mode decomposition (BEMD). This paper explores how much NCA enhances emotion recognition using ECG-derived features, esp. standard HRV features with two difference normalization methods and statistical distribution of instantaneous frequencies and the first differences calculated using Hilbert-Huang Transform (HHT) after empirical mode decomposition (EMD) and BEMD. Results with the MAHNOB-HCI database were validated using subject-dependent and subject-independent scenarios with kNN as classifier for 3-class problem in valence and arousal. A t-test was used to assess the results with significance level 0.05. Results show that NCA enhances the performance up to 74% from the implementation without NCA with p-values close to zero in most cases. Different feature extraction methods offered different performance levels in the baseline but the NCA enhanced them such that the performances were close to each other. In most experiments use of combined standardized and normalized HRV-based features improved performance. Using NCA on this database improved the standard deviation significantly for HRV-based features under subject-independent scenario.
机译:先前的研究表明,仅在特征为主导频率的统计分布和应用二元经验模态分解(BEMD)之后的第一个差异为特征的情况下,使用邻域成分分析(NCA)进行的降维处理才能增强使用ECG进行的3类问题情感识别的性能。本文探讨了NCA在多大程度上利用ECG衍生的功能增强了情感识别能力。标准HRV的特征,具有两种差异归一化方法和瞬时频率的统计分布,以及使用经验模态分解(EMD)和BEMD后使用希尔伯特-黄变换(HHT)计算的第一差异。 MAHNOB-HCI数据库的结果使用与主题无关和与主题无关的场景进行了验证,其中kNN作为价和唤醒三类问题的分类器。 t检验用于评估显着性水平为0.05的结果。结果表明,在大多数情况下,不使用NCA的情况下,NCA可使性能提高74%,而p值几乎为零。不同的特征提取方法在基线中提供了不同的性能级别,但是NCA对其进行了增强,以使性能彼此接近。在大多数实验中,结合使用基于标准HRV和标准化HRV的功能可提高性能。在与受试者无关的情况下,在此数据库上使用NCA可以显着改善基于HRV的功能的标准差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号