【24h】

TapPrints: Your Finger Taps Have Fingerprints

机译:TapPrints:您的手指水龙头有指纹

获取原文

摘要

This paper shows that the location of screen taps on modern smart-phones and tablets can he identified from aecelerom-eter and gyroscope readings. Our findings have serious implications, as we demonstrate that an attacker can launch a background process on commodity smart-phones and tablets, and silently monitor the user's inputs, such as keyboard presses arid icon taps. While precise tap detection is non-trivial, requiring machine learning algorithms to identify fingerprints of closely spaced keys, sensitive sensors on modern devices aid the process. We present TapPrints, a framework for inferring the location of taps on mobile device touch-screens using motion sensor data combined with machine learning analysis. By running tests on two different, off-the-shelf smart-phones and a tablet computer we show that-identifying tap locations on the screen and inferring English letters could be done with up to 90% and 80% accuracy, respectively. By optimizing the core tap detection capability with additional information, such as contextual priors, we are able to further magnify the core threat.
机译:本文显示,他可以从风速计和陀螺仪读数中识别出现代智能手机和平板电脑上的屏幕点击位置。我们的发现具有严重的意义,因为我们证明了攻击者可以在商品智能手机和平板电脑上启动后台进程,并以无提示方式监视用户的输入,例如键盘按键和图标水龙头。尽管精确的轻敲检测并非易事,但需要机器学习算法来识别间隔很近的按键的指纹,而现代设备上的灵敏传感器有助于这一过程。我们提出了TapPrints,这是一个使用运动传感器数据和机器学习分析来推断移动设备触摸屏上轻拍位置的框架。通过在两台不同的现成智能手机和一台平板电脑上进行测试,我们可以识别屏幕上的轻敲位置并推断英文字母,分别可以达到90%和80%的精度。通过使用附加信息(例如上下文优先级)优化核心抽头检测功能,我们可以进一步放大核心威胁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号