首页> 外文会议>International Conference on Medical Image Computing and Computer Assisted Intervention;Conference on Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction >ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Fluid Intelligence Scores from Structural MRI Using Probabilistic Segmentation and Kernel Ridge Regression
【24h】

ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Fluid Intelligence Scores from Structural MRI Using Probabilistic Segmentation and Kernel Ridge Regression

机译:ABCD神经认知预测挑战赛2019:使用概率分割和核岭回归从结构MRI预测个体流体智力评分

获取原文

摘要

We applied several regression and deep learning methods to predict fluid intelligence scores from T1-weighted MRI scans as part of the ABCD Neurocognitive Prediction Challenge 2019. We used voxel intensities and probabilistic tissue-type labels derived from these as features to train the models. The best predictive performance (lowest mean-squared error) came from kernel ridge regression (λ = 10), which produced a mean-squared error of 69.7204 on the validation set and 92.1298 on the test set. This placed our group in the fifth position on the validation leader board and first place on the final (test) leader board.
机译:作为ABCD神经认知预测挑战赛2019的一部分,我们应用了几种回归和深度学习方法来预测T1加权MRI扫描的流体智力评分。我们使用体素强度和从中得出的概率组织类型标签作为特征来训练模型。最佳的预测性能(最低的均方误差)来自内核岭回归(λ= 10),其在验证集上产生了69.7204的均方差,在测试集上产生了92.1298的均方差。这使我们小组在验证排行榜上排名第五,在最终(测试)排行榜上排名第一。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号