首页> 外文会议>International Conference on Inventive Research in Computing Applications >Joint Slot Filling And Intent Prediction for Natural Language Understanding in Frames Dataset
【24h】

Joint Slot Filling And Intent Prediction for Natural Language Understanding in Frames Dataset

机译:框架数据集中用于自然语言理解的联合插槽填充和意图预测

获取原文

摘要

Spoken Dialogue System, Chatbots has emerged as an important research topic in artificial intelligence and natural language processing domain. The tasks in Spoken Dialogue System, Chatbots are mainly classified into three viz. domain classification, slot filling and intent prediction. In this paper, we present a novel method for slot filling and intent prediction by appending the intent information with each slot, which can be used in handling complex tasks such as travel planning. Inspired by Multi-Domain Joint Semantic Frame Parsing using Bidirectional RNN-LSTM, we trained the model using bidirectional RNN-LSTM to jointly predict the slot values and intent for a single text having multiple intents. This method proved to be successful in predicting slot values and intents with an accuracy of 90%. The system uses IOB tagged dataset generated from the Microsoft's Human-human goal oriented dataset(Frames Dataset) for training and testing.
机译:语音对话系统,聊天机器人已成为人工智能和自然语言处理领域的重要研究课题。在语音对话系统中,聊天机器人的任务主要分为三个部分。域分类,广告位填充和意图预测。在本文中,我们通过将意图信息附加到每个插槽中,提出了一种用于插槽填充和意图预测的新颖方法,该方法可用于处理诸如旅行计划之类的复杂任务。受使用双向RNN-LSTM的多域联合语义框架解析的启发,我们使用双向RNN-LSTM训练了模型,以共同预测具有多个意图的单个文本的广告位值和意图。实践证明,该方法可以成功地以90%的精度预测广告位值和意图。该系统使用从Microsoft的“人类-人类目标导向”数据集(“框架数据集”)生成的带有IOB标签的数据集进行训练和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号